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Abstract

A new method for simulating distributed elements is described.

The Asymptotic Waveform Evaluation (AWE) technique is used

to compute a low-order approximation to the admittance

matrix for a system of coupled Iossy lines. The Y-matrix can

serve as a macromodelfor the lines, so that they can be simu-

lated together with arbitrary (nonlinear) terminations. A

major advantage of the new method is that it allows general

distributed elements to be simulated in the time domain with-

out using computationally expensive lumped models or numer-

ical inverse tran~orm techniques.

1. Introduction

F R feature sizes, increasing complexity, and higher

clock rates have combined to make interconnect the

dominant determinant of speed in high-performance electronic

systems. The abdity to efficiently simulate circuits containing

accurate intercomect models is essenti~, performance degra-

dation due to delays, dispersion, ringing, reflection, attenua-

tion and crosstrdk must be detected before a system is built.

Models which capture the dk+tributed nature of interconnect

are thus highly desirable. Common approaches to simulating

these models involve lumped networks, FFT’s [2], waveform

relaxation [3], or numerical inversion of the Laplace transform

[9]. These methods lack the efficiency to be used in large cir-

cuit problems.

Asymptotic Waveform Evaluation (AWE) is a technique

which has been developed recently for the simulation of

lumped linear circuits [5]. AWE efficiently computes a

reduced-order model of a very high-order ~mear system. It uses

Pad6 approximation to match the ~ low-order time moments
* der rationrd function [4].of the circuit response to a q -or

Because moment computations typically can be accomplished

100 or more times faster than a conventional transient anrdysis,

AWE is very efficient. The result of an AWE analysis is a set

of drhing-point and transfer immittances for the circuit being

analyzed. This information can be used as a macromodel for

frequency [1] or time-domain simulations [6].

This paper describes art extension to the basic AWE algorithm

which permits the efficient analysis of circuits containing dis-

tributed elements. The distributed elements considered here

are systems of coupled 10SSY transmission lines. First it is

shown how to compute the moments of the admittance matrix

for the system of lines. Then it is indicated how these moments
can be used for macromodelling purposes. An example is

given to demonstrate the effectiveness of the technique.

The present technique makes three improvements to previ-

ously published moment computation methods [7]. First, the

derivation is more intuitive and easier to understand. Second,

the method presented here does not rely on computing the

derivatives of eigenvalues and eigenvectors with respect to the

frequency variable s. Finally, a novel frequency-shifting tech-

nique is introduced which cart lead to more accurate AWE

approximations.

2. Moments of Distributed Elements

Consider a system of n coupled lossy transmission lines. The

lines are described by the generalized Telegrapher’s equations

in matrix form

~i (x, t) +GP (x, t) +Ca (
ax

~v X,t) =0 (1)

+V(x, O +Ri(x, O +L%i(x, t)= O (2)

Here, i (x, t) and v (x, t) represent the vectors of line currents

and voltages at a point x at time t. R, G, L, and C are the per-

unit-length resistance, conductance, inductance, and capaci-

tance matrices, respectively. Taking the Laplace transform of

these equations yields

~V(x, s) +( R+s L)Z(I,S) = O
dx

(3)

fi(x, s) +( G+sC)V(X, S) = O (4)

Combining (3) and (4) results in

-& (x, s) = (R+ sL) (G+ S~) V (X, S) (5)
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Now let V (x,s) be expanded in a Taylor series abouts = O:

V(x, s) = Vo(x) +sv~(x) +S2V2(X)+ ... (6)

Inserting (6) into (5) yields

d%. d2V1 ~d2V2
— +.$— +s — +... =
dx= dx2 dx2

(R +W) (G+sC) [VO(X) +sV1 (X) +$2 V2(X) + ...1

(7)

Matching corresponding powers ofs, the following set of DC

differential equations is obtained

d%.
— -RGVO(X) = O
dx2

d%l
— –RGV1 (X) = (RC +LG) VO (X)
dx2

sndfork>l.

(8)

(9)

d%~
— –RGVk(x) = (RC+LG) V~_l (x) +LCVk-2(X)
dx2

(lo)

In order to generate the moments of V (x,s, the same system

of ordinary differential equations must be solved repeatedly;

only the forcing functions on the right-hand side change each

time. First, VO (x) is determined from (8). Then (9) is used to

find VI (x) , and so forth, until 29 moments have been found.

It is possible to decouple these equations and solve them

exactly if the matrix RG can be diagonalized. This can be

accomplished by making a frequency-independent similarity

transformation. The voltages V&(x) are transformed to a set of

voltages ~~ (x) , defined by

V’k (x) = T~~ (X) (11)

The nonsingular, constant matrix T must be chosen so that the
matrix

A2 = T_l (RG) T (12)

~, z, .,. l;). (The task of finding Tis diagonal: A2 = diag (L2 k2

and A2 corresponds to the problem of determining the eigen-

values and eigenvectors of the constant matrix RG.)

If(11 ) is substituted into (8)-(10), which are then premultiplied

by T_l, one obtains

@ . A*~k (x) = A~~_l(x) +l?i7~_2(x)
dx2

(13)

where

A = T_l(RC+LG)T = [ccij] fork> Oand (14)

B = T_l(LC)T = [~ij] fork> 1. (15)

It should be noted that, in general, the frequency-independent

similarity transformation (12) will not also diagonalize the

matrices A artd B. This is not a problem, however, because

these matrices affect only the right-hand side of the equations.

After diagomdizing, one is left with a set of n decoupled scalar

differential equations. For the ith mode aud @ moment,

Vji) (x):

The right-hand side of (16) contains contributions from lower-

order moments of modes other than the im. This does not inval-

idate the decoupling, however, because the lower-order

moments will already have been computed. The homogeneous

solution to this equation is simply determined from the bound-

ary conditions at x = O and x = 1;

Sirlmi (1-x) _(i) sinmix
Vjj (x) = Vp (o)

sinmil + Vk (0 = (17)
1

where 1 is the length of the lines. The particular solution is

slightly more difficult to obtain. Sirtce the forcing functions rue

also solutions of the homogeneous equation, the particular

solution will involve not only sinho and cosho, but also pow-

ers of x multiplying these functions:

m=lJj=l

By substituting (18) into (16), and matching like powers of x,

recursion relationships between the coefficients ikl~ and N?

can be derived. Thus it is possible to derive exact analytical

formulae for the moments of the line voltage, without relying

on any form of lumped (discrete) approximation.

Once the moments ~& (-x) have been determined, the moments

V~ (x) can be found by premultiplying by T. Then, io order to

get the moments of the admittance matrix, the moments of

Z (x,s) must be determined. It is assumed that Z (x,s) has a

Taylor series about s = O:

z (x, s) = 10 (x) + Szl (x) + S2Z2(x) + . . . (19)

Substituting dris into (3) and matching like powers ofs yields

dVo (X)
—+ RZO(X) = o

dx

and fork> 1,

dV~ (X)
—+ RZ~(x) +LIk_l (x) = O

dx

(20)

(21)

1338



Since the moments of V (x,s) as well as the lower-order

moments of Z (x,s) are known, (21) can be solved for the next

moment Z~ (x) , In most cases, only the “port” currents at the

points x = O and x = 1 are of interest so (20) and (21) need
only be solved at these points. Of course, since the V~ (x) are

known analytically, it is a simple matter to compute their

derivatives.

The procedure described above allows one to compute the

moments of the multiport admittance matrix Y (s) for a cou-

pled system of lossy lines:

Y(s) = YO+SY1+S*Y2+... (22)

Once the moments have been found, they can be used as sten-

cils within a global Y-matrix [1]. This allows large linear cir-

cuits containing both lumped and distributed elements to be

simulated efficiently in the frequency domain. Ahematively, if

nonlinear terminations are present, time-domain simulation

may be preferred. Pad.$ approximation maybe used to convert

the 2q low-order moments for each matrix entry (i,j) into a q-

pole rational function [4]. This can be written in partial frac-

tion form as

~$1~ = [%lij+~[yllij+s’ [%lij+... (23)

where the pm are poles of the approximation, and the km are

the corresponding residues. It should be noted that different

orders of approximation q can be used for each entry of the

matrix. Also, the poles arc not restricted to be common among

the entries. This freedom permits each entry to be approxi-

mated more accurately. The (ij) entry of the approximate

impnke response matrix for the lines can then be determined

easily by taking the symbolic inverse transform of (23):

(24)

nl=l

The impulse responses can be used to derive a matrix stencil

for the system of lines. This stencil can be employed in a time-

domain simulator baaed on conventional Newton-Raphson

and numerical integration techniques. Only a constant number

of operations are required at each time point to perform the

stenciling. Thk capability has been implemented in the

AWESpice program [6]. An analogous technique has been

employed outside of the SPICE context in [8].

3. Frequency Shifting

k some cases, using the expansion points = O for the Taylor

series results in a poor Pad6 approximation. It is often possible

to improve the approximation by choosing a different expan-

sion point along the positive part of the real axis. This change

of origin helps to reduce problems caused by poles with vastly

different magnitudes (stiff systems.) To perform the expansion

about a points = h, It> O, rewrite (3) and (4) as

~v(x, s) + rR+h5+(s-h)L] z(x, s) = o
dx

(25)

~Z(x, @+ [G+hC+(s–h) C] V(x, s) = O
dx

(26)

It is now possible to define frequency-shifted R and G matri-

ces as

R’=R+hL

G’=G+hC
(27)

V (x, s) and Z (x, s) can be expanded in terms of the variable

s-h:

V(x, s) =to(x) +(s–h)?l (x)+ (s–h)*t2 (x) +.,.
(28)

Z(x, s) =20(X) +(s–h)il (x)+ (S–h)zlz (x) +...

By substituting (27) and (28) into (25) and (26), it is possible

to derive recursion equations for the frequency-shifted

moments. These equations need not be presented here, because

they are identical in form to the relations derived in Section 2.

Once the frequency-shifted moments of the admittance matrix

have been determined, Pad6 approximation may again be

applied. The resulting approximate, shifted poles may easily

be converted back to the original origin through addition of the

real constant h,

Empirical evidence shows that frequency shifting can substan-

tially improve the quality of the Pad6 approximation. In addi-

tion, frequency-shifting also permits handling the special cases

of lines with zero resistance or conductance matrices. The

shifted matrices R’ and G’ will always be nonzero, and thus

the method described in Section 2 applies without modifica-

tion.

4. Example

To demonstrate their effectiveness, the tectilques presented in

this paper were applied to a circuit containing two systems of

coupled lossy lines, lumped elements and nonlinear 54F240

line drivers. The circuit is shown below in Figure 1. Note that

one distributed element consists of four coupled lossy lines,

and the other of two. Each 54F240 driver model contains 7

transistors and 14 diodes.

The moment computations for the distributed elements

required a total of 0.6 CPU-see. The transient analysis of the

circuit using the AWESpice program [6] consumed 16.6 more

CPU-see. (All CPU times are for a DECstation 3100). The

same simulation-using afour-segment approximation to each

of the systems of lines-required 23.4 CPU-see. The resulting

waveforms at the source and load points are shown in Figure 2

below. An example of a crosstalk waveform from the same cir-

cuit is shown in Figure 3.

5. Conclusions

AWE provides an efficient mechanism for developing compact

macromodels of distributed circuit elements. A new method

for accomplishing the moment calculations has been presented
which relies on simple recursive solution of ordinary differen–

tial equations. No lumped approximations are required. A

novel frequency-shifting method has also been described. This
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Figure 1. Example Circuit
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is helpful in obtaining improved Pad6 approximations.
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