JJ-1

Simulating Distributed Elements with Asymptotic Waveform Evaluation®

J. Eric Bracken, Vivek Raghavan and Ronald A. Rohrer

Dept. of Electrical and Computer Engineering
Carnegie Mellon University, Pittsburgh, PA 15213

Abstract

A new method for simulating distributed elements is described.
The Asymptotic Waveform Evaluation (AWE) technique is used
to compute a low-order approximation to the admittance
matrix for a system of coupled lossy lines. The Y-matrix can
serve as a macromodel for the lines, so that they can be simu-
lated together with arbitrary (nonlinear) terminations. A
major advantage of the new method is that it allows general
distributed elements to be simulated in the time domain with-
out using computationally expensive lumped models or numer-
ical inverse transform techniques.

1. Introduction

R feature sizes, increasing complexity, and higher
clock rates have combined to make interconnect the
dominant determinant of speed in high-performance electronic
systems. The ability to efficiently simulate circuits containing
accurate interconnect models is essential; performance degra-
dation due to delays, dispersion, ringing, reflection, attenua-
tion and crosstatk must be detected before a system is built.

Models which capture the distributed nature of interconnect
are thus highly desirable. Common approaches to simulating
these models involve lumped networks, FFT’s [2], waveform
relaxation [3], or numerical inversion of the Laplace transform
[9]. These methods lack the efficiency to be used in large cir-
cuit problems.

Asymptotic Waveform Evaluation (AWE) is a technique
which has been developed recently for the simulation of
lumped linear circuits [5]. AWE efficiently computes a
reduced-order model of a very high-order linear system. It uses
Padé approximation to match the 2¢ low-order time moments
of the circuit response to a q‘h-ordcr rational function [4].
Because moment computations typically can be accomplished
100 or more times faster than a conventional transient analysis,
AWE is very efficient. The result of an AWE analysis is a set
of driving-point and transfer immittances for the circuit being
analyzed. This information can be used as a macromodel for
frequency [1] or time-domain simulations [6].
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This paper describes an extension to the basic AWE algorithm
which permits the efficient analysis of circuits containing dis-
tributed elements. The distributed elements considered here
are systems of coupled lossy transmission lines. First it is
shown how to compute the moments of the admittance matrix
for the system of lines. Then it is indicated how these moments
can be used for macromodelling purposes. An example is
given to demonstrate the effectiveness of the technique.

The present technique makes three improvements to previ-
ously published moment computation methods [7]. First, the
derivation is more intuitive and easier to understand. Second,
the method presented here does not rely on computing the
derivatives of eigenvalues and eigenvectors with respect to the
frequency variable s. Finally, a novel frequency-shifting tech-
nique js introduced which can lead to more accurate AWE
approximations.

2. Moments of Distributed Elements

Consider a system of n coupled lossy transmission lines. The
lines are described by the generalized Telegrapher’s equations
in matrix form:

|
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%i (x, 1) +Gv (x, 1) +C%v (x5, 1) = %))

a%" (x, 1) +Ri(x, 1) +L%i (1) =0 @

Here, i (x, t) and v (x, f) represent the vectors of line currents
and voltages at a point x at time ¢. R, G, L, and C are the per-
unit-length resistance, conductance, inductance, and capaci-
tance matrices, respectively. Taking the Laplace transform of
these equations yiclds

‘—;i;V (%, 8) + (R+sL)I(x,s) = 0 3)
gxl (1,5) + (G+sC)V (x,5) = 0 @
Combining (3) and (4) results in

zld—;V (x,8) = (R+sL) (G+sL)V (x,s) )
X
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Now let V (x, s) be expanded in a Taylor series about s = 0:

V(x,5) = Vo(x) sV (x) +V,(x) +... ©)
Inserting (6) into (5) yields
das? dx? ar?
(R +5L) (G +5C) [Vy(x) +sV, (%) +5V, (x) +...]
@)

Matching corresponding powers of s, the following set of DC
differential equations is obtained:

d*v,
— ~RGVy(x) =0
X

®
av,
— ~RGV,(x) = (RC+LG)V,y(x) 9
dx
and for k> 1,

v,
7 ~RGV,(x) = (RC+LG)V,_, (x) +LCV,_,(x)
X

(10)

In order to generate the moments of V (x, s, the same system
of ordinary differential equations must be solved repeatedly;
only the forcing functions on the right-hand side change each
time. First, V, (x) is determined from (8). Then (9) is used to
find V; (x) , and so forth, until 2¢ moments have been found.

It is possible to decouple these equations and solve them
exactly if the matrix RG can be diagonalized. This can be
accomplished by making a frequency-independent similarity
transformation. The voltages V, (x) are transformed to a set of
voltages V; (x) , defined by

Vi(x) = TV, (x) an

The nonsingular, constant matrix T must be chosen so that the
matrix
A2

=T RG)T 12)

is diagonal: A? = diag (A2, A2, ...A2) . (The task of finding T
and A? corresponds to the problem of determining the eigen-
values and eigenvectors of the constant matrix RG.)

If (11) is substituted into (8)-(10), which are then premultiplied
by T 1, one obtains

d2Vk e
—AVi(x) = AV,_ (1) +BV, 5 (%) 13)
where
A =T"(RC+LG)T = [oy]] fork>Oand (14)
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B=T'LO)T = [B,] fork>1. as)
It should be noted that, in general, the frequency-independent
similarity transformation (12) will not also diagonalize the
matrices A and B. This is not a problem, however, because
these matrices affect only the right-hand side of the equations.

After diagonalizing, one is left with a set of 2 decoupled scalar

dlffercntlal equations. For the i" mode and moment,
Ve (1)
d 7O _a2p N0 N0
i — -
2 “AVe (=Y o, ViZ1(x) + 2 B Vi~ 2(xX16)

=1 j=1

The right-hand side of (16) contains contrlbutlons from lower-
order moments of modes other than the i'®', This does not inval-
idate the decoupling, however, because the lower-order
moments will already have been computed. The homogeneous
solution to this equation is simply determined from the bound-
ary conditions at x = O and x = [:

sinh, (/- x)
sinhA,/

(t) )

L p S
L) = v () 7O ()~

mh?» l an
where [ is the length of the lines. The particular solution is
slightly more difficult to obtain. Since the forcing functions are
also solutions of the homogeneous equation, the particular
solution will involve not only sinh() and cosh(), but also pow-
ers of x multiplying these functions:

k n
VO (x) = 2 2 MY'x" cosh (M) +
oy (18)

9j
k n
Z Z N4™ 5™ sinh (l.x)
=0j=
By substituting (18) into (16), and matching like powers of x,
recursion relationships between the coefficients M. and Nk’”
can be derived. Thus it is possible to derive exact analytncal
formulae for the moments of the line voltage, without relying
on any form of lumped (discrete) approximation.

Once the moments V,, (x) have been determined, the moments
V, (x) can be found by premultiplying by T. Then, in order to
get the moments of the admittance matrix, the moments of
I(x,s) must be determined. It is assumed that I (x, s) has a
Taylor series about s = 0:

I(x8) = Iy(x) +sI,(x) +5°Iy(x) +... (19)

Substituting this into (3) and matching like powers of s yields

dVy(x)
i +RI (x) = 0 20)
and fork> 1,
dv,(x)
o TRL() +LL_ () =0 Q1)



Since the moments of V(x,s) as well as the lower-order
moments of I (x, s) are known, (21) can be solved for the next
moment I (x) . In most cases, only the “port” currents at the
points x = 0 and x = [ are of interest; so (20) and (21) need
only be solved at these points. Of course, since the V, (x) are
known analytically, it is a simple matter to compute their
derivatives.

The procedure described above allows one to compute the
moments of the multiport admittance matrix ¥ (s) for a cou-
pled system of lossy lines: '
Y(s5) = Yo+sY, +5°¥, +... 2)
Once the moments have been found, they can be used as sten-
cils within a global Y-matrix [1]. This allows large linear cir-
. cuits containing both lumped and distributed elements to be
simulated efficiently in the frequency domain. Alternatively, if
nonlinear terminations are present, time-domain simulation
may be preferred. Padé approximation may be used to convert
the 2q low-order moments for each matrix entry (i,f) into a ¢-
pole rational function [4]. This can be written in partial frac-
tion form as

k

m
S=Pu

23)

M

= [¥ol 451X, +5° [V 4,

m=1

where the p, are poles of the approximation, and the k,, are
the corresponding residues. It should be noted that different
orders of approximation ¢ can be used for each entry of the
matrix. Also, the poles are not restricted to be common among
the entries. This freedom permits each entry to be approxi-
mated more accurately. The (i,j} entry of the approximate
impulse response matrix for the lines can then be determined
easily by taking the symbolic inverse transform of (23);

q
¥ = Y k,exp@,0) (24)

m=1

The impulse responses can be used to derive a matrix stencil
for the system of lines. This stencil can be employed in a time-
domain simulator based on conventional Newton-Raphson
and numerical integration techniques. Only a constant number
of operations are required at each time point to perform the
stencilling. This capability has been implemented in the
AWESpice program [6]. An analogous technique has been
employed outside of the SPICE context in [8].

3. Frequency Shifting

In some cases, using the expansion point s =  for the Taylor
series results in a poor Padé approximation. It is often possible
to improve the approximation by choosing a different expan-
sion point along the positive part of the real axis. This change
of origin helps to reduce problems caused by poles with vastly
different magnitudes (stiff systems.) To perform the expansion
about a point s = &, h >0, rewrite (3) and (4) as

dixV(x,s) +[R+hL+ (s~M)L1I(x,s) =0 (25)
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%I(x,s) +[G+hC+ (s—-MCIV(x,s) =0  (26)
It is now possible to define frequency-shifted R and G matri-
ces as

R'=R+hL

2
G'=G+hC N

V(x,s) and I (x, s) can be expanded in terms of the variable
s—~h:

V(xs) =Vo(x)+ (s—B)V (0 + (s—h)2V,(x) +.

28

I(x,s) =lo(x) + 5—W 1, (x) + (s—h) 2, (x) + ...( ‘
By substituting (27) and (28) into (25) and (26), it is possible
to derive recursion equations for the frequency-shifted
moments. These equations need not be presented here, because
they are identical in form to the relations derived in Section 2.
Once the frequency-shifted moments of the admittance matrix
have been determined, Padé approximation may again be
applied. The resulting approximate, shifted poles may easily
be converted back to the original origin through addition of the
real constant /.

Empirical evidence shows that frequency shifting can substan-
tially improve the quality of the Padé approximation. In addi-
tion, frequency-shifting also permits handling the special cases
of lines with zero resistance or conductance matrices. The
shifted matrices R’ and G’ will always be nonzero, and thus
the method described in Section 2 applies without modifica-
tion.

4. Example

To demonstrate their effectiveness, the techniques presented in
this paper were applied to a circuit containing two systems of
coupled lossy lines, lumped elements and nonlinear 54F240
line drivers. The circuit is shown below in Figure 1. Note that
one distributed element consists of four coupled lossy lines,
and the other of two. Each 54F240 driver model contains 7
transistors and 14 diodes.

The moment computations for the distributed elements
required a total of 0.6 CPU-sec. The transient analysis of the
circuit using the AWESpice program [6] consumed 16.6 more
CPU-sec. (All CPU times are for a DECstation 3100). The
same simulation—using a four-segment approximation to each
of the systems of lines—required 23.4 CPU-sec. The resulting
waveforms at the source and load points are shown in Figure 2
below. An example of a crosstalk waveform from the same cir-
cuit is shown in Figure 3.

5. Conclusions

AWE provides an efficient mechanism for developing compact
macromodels of distributed circuit elements. A new method
for accomplishing the moment calculations has been presented
which relies on simple recursive solution of ordinary differen-
tial equations. No lumped approximations are required. A
novel frequency-shifting method has also been described. This
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Figure 1. Example Circuit

Source and Load Waveforms
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Figure 2. Source and Load Waveforms

is helpful in obtaining improved Padé approximations.
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Figure 3. Crosstalk Waveform
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